Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.7 Exercises - Page 221: 26

Answer

$${\text{length}} = \sqrt 2 r{\text{ and width}} = \frac{r}{{\sqrt 2 }}$$

Work Step by Step

$$\eqalign{ & {\text{From the given image:}} \cr & {\text{Let }}A{\text{be the area to be maximized}} \cr & A = 2xy{\text{ }}\left( {\bf{1}} \right) \cr & {\text{We have that }}y = \sqrt {{r^2} - {x^2}} \cr & {\text{Substituting }}\sqrt {{r^2} - {x^2}} {\text{ for }}y{\text{ into the equation }}\left( {\bf{1}} \right) \cr & A = 2x\sqrt {{r^2} - {x^2}} ,{\text{ domain }}\left( {0 < x < r} \right) \cr & {\text{Differentiate}} \cr & \frac{{dA}}{{dx}} = 2x\left( {\frac{{ - 2x}}{{2\sqrt {{r^2} - {x^2}} }}} \right) + 2\sqrt {{r^2} - {x^2}} \cr & \frac{{dA}}{{dx}} = \frac{{ - 2{x^2}}}{{\sqrt {{r^2} - {x^2}} }} + 2\sqrt {{r^2} - {x^2}} \cr & {\text{Let }}\frac{{dA}}{{dx}} = 0,{\text{ then}} \cr & \frac{{ - 2{x^2}}}{{\sqrt {{r^2} - {x^2}} }} + 2\sqrt {{r^2} - {x^2}} = 0 \cr & \frac{{{x^2}}}{{\sqrt {{r^2} - {x^2}} }} = \sqrt {{r^2} - {x^2}} \cr & {x^2} = {r^2} - {x^2} \cr & 2{x^2} = {r^2} \cr & x = \pm \frac{r}{{\sqrt 2 }} \cr & {\text{Taking }}x = \frac{r}{{\sqrt 2 }} \cr & {\text{Using the first derivative test}} \cr & {\text{Interval }}\left( {0,\frac{r}{{\sqrt 2 }}} \right),{\text{ }}\left. {\frac{{dA}}{{dx}}} \right| > 0 \cr & {\text{Interval }}\left( {\frac{5}{{\sqrt 2 }},5} \right),{\text{ }}\left. {\frac{{dA}}{{dx}}} \right| < 0 \cr & {\text{Therefore, there is a relative maximum at }}x = \frac{r}{{\sqrt 2 }} \cr & y = \sqrt {{r^2} - {x^2}} \to y = \sqrt {{r^2} - {{\left( {\frac{r}{{\sqrt 2 }}} \right)}^2}} = \frac{r}{{\sqrt 2 }} \cr & {\text{The length}}\,{\text{is }}2x = 2\left( {\frac{r}{{\sqrt 2 }}} \right) = \frac{{2r}}{{\sqrt 2 }} = \sqrt 2 r \cr & {\text{The width}}\,{\text{is }}y = \frac{r}{{\sqrt 2 }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.