Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.7 Exercises - Page 221: 22

Answer

$$x = 3{\text{ and }}y = \frac{3}{2}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}A{\text{ be the area to be minimized}} \cr & A = xy{\text{ }}\left( {\bf{1}} \right) \cr & {\text{From the given image in the textbook we have that }}y = \frac{{6 - x}}{2} \cr & {\text{Substituting }}\frac{{6 - x}}{2}{\text{ for }}y{\text{ into the equation }}\left( {\bf{1}} \right) \cr & A = x\left( {\frac{{6 - x}}{2}} \right) \cr & A = 3x - \frac{{{x^2}}}{2} \cr & {\text{Differentiate}} \cr & \frac{{dA}}{{dx}} = 3 - x \cr & {\text{Let }}\frac{{dA}}{{dx}} = 0,{\text{ then}} \cr & 3 - x = 0 \cr & x = 3 \cr & {\text{Calculate the second derivative}} \cr & \frac{{{d^2}A}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {3 - x} \right] \cr & \frac{{{d^2}A}}{{d{x^2}}} = - 1 \cr & {\text{By the second derivative test:}} \cr & {\left. {\frac{{{d^2}A}}{{d{x^2}}}} \right|_{x = 3}} = - < 0{\text{ Relative maximum}} \cr & {\text{Calculate }}y \cr & y = \frac{{6 - x}}{2} \to y = \frac{{6 - 3}}{2} = \frac{3}{2} \cr & {\text{Therefore, the dimensions are:}} \cr & x = 3{\text{ and }}y = \frac{3}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.