Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 213: 58

Answer

$$f\left( x \right) = \frac{{{x^2} - 2x + 1}}{{x - 2}}$$

Work Step by Step

$$\eqalign{ & {\text{Vertical asymptote: }}x = 2 \cr & {\text{To obtain a vertical asymptote at }}x = 2,{\text{ we must set in the}} \cr & {\text{denominator of the rational function an expression whose}} \cr & {\text{real root is }}x = 2,{\text{ then using }}x - 2 \cr & f\left( x \right) = \frac{1}{{x - 2}} \cr & {\text{Slant asymptote: }}y = x \cr & {\text{To obtain a slant asymptote }} \cr & {\text{ }}f\left( x \right) = x + \frac{c}{{Q\left( x \right)}},{\text{ }}c{\text{ is any constant }} \ne {\text{0}} \cr & {\text{Let }}Q\left( x \right) = x - 2,{\text{ then}} \cr & \frac{{P\left( x \right)}}{{Q\left( x \right)}} = x + \frac{c}{{Q\left( x \right)}} \cr & \frac{{P\left( x \right)}}{{x - 2}} = x + \frac{c}{{x - 2}} \cr & P\left( x \right) = x\left( {x - 2} \right) + c \cr & P\left( x \right) = {x^2} - 2x + c \cr & {\text{Let }}c = 1 \cr & P\left( x \right) = {x^2} - 2x + 1 \cr & {\text{Therefore,}} \cr & f\left( x \right) = \frac{{{x^2} - 2x + 1}}{{x - 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.