Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 213: 54

Answer

See graph

Work Step by Step

$$\eqalign{ & f\left( x \right) = \tan \left( {\sin \pi x} \right) \cr & \cr & \left( {\text{a}} \right){\text{Graph of the function using a CAS }}\left( {{\text{shown below}}} \right) \cr & \cr & \left( {\text{b}} \right){\text{From the graph, we can notice that the function is odd,}} \cr & {\text{so it is symmetric with respect to the origin}}{\text{.}} \cr & {\text{analitically}} \cr & f\left( { - x} \right) = \tan \left( {\sin \left( { - \pi x} \right)} \right) \cr & f\left( { - x} \right) = \tan \left( { - \sin \left( {\pi x} \right)} \right) \cr & f\left( { - x} \right) = - \tan \left( {\sin \left( {\pi x} \right)} \right) \cr & f\left( { - x} \right) = - f\left( x \right),{\text{ odd function}}{\text{.}} \cr & \cr & \left( {\text{c}} \right){\text{Yes, the function is periodic, The period is }}T = 2. \cr & \cr & \left( {\text{d}} \right){\text{The extrema on }}\left( { - 1,1} \right){\text{ are:}} \cr & {\text{Relative minimum at the point }}\left( { - 0.5, - 1.56} \right) \cr & {\text{Relative maximum at the point }}\left( {0.5,1.56} \right) \cr & \cr & \left( {\text{e}} \right){\text{From the graph we can notice that the graph is }} \cr & {\text{concave down on the interval }}\left( {0,1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.