Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.4 Exercises - Page 137: 102

Answer

a) f'(5) = 6 + 18 = 24 b) Not possible to answer (Need g'(3)) c)f'(5) = $\frac{4}{3}$ d)f'(5) = 162

Work Step by Step

a) f'(x) = g(x)$\times$h'(x) + h(x)$\times$g'(x) f'(5) = g(5)$\times$h'(5) + h(5)$\times$g'(5) f'(5) = -3$\times$-2 + 3$\times$6 f'(5) = 6 + 18 = 24 b) f(x) = g(h(x)) f'(x) = g'(h(x)) $\times$ h'(x) f'(5) = g'(h(5)) $\times$ h'(5) f'(5) = g'(3) $\times$-2 Since we do not know g'(3), it is not possible to solve this question. c) f(x) = $\frac{g(x)}{h(x)}$ f'(x) = $\frac{(h(x)\times g'(x)) - (g(x)\times h'(x))}{h(x)^{2}}$ f'(5) = $\frac{(h(5)\times g'(5)) - (g(5)\times h'(5))}{h(5)^{2}}$ f'(5) = $\frac{(3 \times 6) - (-5 \times -2)}{9}$ f'(5) = $\frac{(18) - (10)}{9}$ f'(5) = $\frac{8}{9}$ = $\frac{4}{3}$ d) f(x) = g(x)$^{3}$ f'(x) = 3$\times g(x)^{2}$ $\times g'(x)$ f'(5) = 3$\times g(5)^{2}$ $\times g'(5)$ f'(5) = 3$\times 9$ $\times 6$ f'(5) = 162
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.