Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 278: 7

Answer

$$\,\int {\frac{{\cos \left( {2\sqrt x } \right)}}{{\sqrt x }}} dx = \sin \left( {2\sqrt x } \right) + C$$

Work Step by Step

$$\eqalign{ & {\text{Let }}\frac{d}{{dx}}\left[ {\sin \left( {2\sqrt x } \right)} \right] \cr & {\text{using the chain rule }}\frac{d}{{dx}}\left[ {\sin u} \right] = \cos uu' \cr & \,\,\,\,\,\,\,\,\,\,\,{\text{ }}\frac{d}{{dx}}\left[ {\sin \left( {2\sqrt x } \right)} \right] = \cos \left( {2\sqrt x } \right)\left( {2\sqrt x } \right)' \cr & {\text{Differentiating}} \cr & \,\,\,\,\,\,\,\,\,\,\,{\text{ }}\frac{d}{{dx}}\left[ {\sin \left( {2\sqrt x } \right)} \right] = 2\cos \left( {2\sqrt x } \right)\left( {\frac{1}{{2\sqrt x }}} \right) \cr & {\text{Simplifying}} \cr & \,\,\,\,\,\,\,\,\,\,\,{\text{ }}\frac{d}{{dx}}\left[ {\sin \left( {2\sqrt x } \right)} \right] = \frac{{\cos \left( {2\sqrt x } \right)}}{{\sqrt x }} \cr & {\text{Thus}}{\text{,}}\,\,\,\,{\text{a corresponding integration formula is}} \cr & \,\,\,\,\,\,\,\,\,\,\,\int {\frac{{\cos \left( {2\sqrt x } \right)}}{{\sqrt x }}} dx = \sin \left( {2\sqrt x } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.