Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 278: 5

Answer

$$\int {\frac{{3{x^2}}}{{2\sqrt {{x^3} + 5} }}} dx = \sqrt {{x^3} + 5} + C$$

Work Step by Step

$$\eqalign{ & {\text{Let }}\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] \cr & {\text{use the property }}\sqrt {f\left( x \right)} = {\left[ {f\left( x \right)} \right]^{1/2}} \cr & \,\,\,\,\,\,\,\,\,\,\,\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] = \frac{d}{{dx}}\left[ {{{\left( {{x^3} + 5} \right)}^{1/2}}} \right] \cr & {\text{By the chain rule}}{\text{,}} \cr & \,\,\,\,\,\,\,\,\,\,\,\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] = \frac{1}{2}{\left( {{x^3} + 5} \right)^{1/2 - 1}}\left( {{x^3} + 5} \right)' \cr & {\text{Differentiating}} \cr & \,\,\,\,\,\,\,\,\,\,\,\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] = \frac{1}{2}{\left( {{x^3} + 5} \right)^{ - 1/2}}\left( {3{x^2}} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] = \frac{{3{x^2}}}{{2{{\left( {{x^3} + 5} \right)}^{1/2}}}} \cr & \,\,\,\,\,\,\,\,\,\,\,\frac{d}{{dx}}\left[ {\sqrt {{x^3} + 5} } \right] = \frac{{3{x^2}}}{{2\sqrt {{x^3} + 5} }} \cr & {\text{Thus}}{\text{,}} \cr & \,\,\,\,\,\,\,\,\,\,\,d\left[ {\sqrt {{x^3} + 5} } \right] = \frac{{3{x^2}}}{{2\sqrt {{x^3} + 5} }}dx \cr & {\text{A corresponding integration formula is}} \cr & \,\,\,\,\,\,\,\,\,\,\,\int {\frac{{3{x^2}}}{{2\sqrt {{x^3} + 5} }}} dx = \sqrt {{x^3} + 5} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.