Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 805: 43

Answer

We have proven parts (e),(d) of the theorem.

Work Step by Step

Taking into the account the property $k\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ k a_{31} & k a_{32} & k a_{33}\end{array}\right|=\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ k a_{21} & k a_{22} & k a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ We get that \[ \begin{aligned} (\vec{u} \times \vec{v})k=\left|\begin{array}{ccc} \hat{1} & \hat{j} & \hat{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right|k &=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ k u_{1} & k u_{2} & k u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right| \\ &=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle \times\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\ &=(k \vec{u}) \times \vec{v} \end{aligned} \] Similarly, \[ \begin{aligned} (\vec{u} \times \vec{v})\dot{k} &=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & k \\ u_{1} & u_{2} & u_{3} \\ k v_{1} & k v_{2} & k v_{3} \end{array}\right| \\ &=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \times\left\langle k v_{1}, k v_{2}, k v_{3}\right\rangle \\ &=\vec{u} \times (k \vec{v}) \end{aligned} \] Part e) from the properties: \[ i) \ \overrightarrow{0}=0(\vec{v}) \] $$ii) \ -\vec{v} \times \vec{u}=\vec{u} \times \vec{v}$$ \[ \text { iii) } (\vec{u} \times \vec{v})k=\vec{u} \times(k \vec{v}) \] For $0=k$: \[ \begin{array}{l} 0(\vec{u} \times \vec{v})=\vec{u} \times(0 \vec{v})=\vec{u} \times \overrightarrow{0}=\overrightarrow{0} \\ \vec{u} \times \overrightarrow{0}=-\overrightarrow{0} \times \vec{u}=\overrightarrow{0} \end{array} \] Finally, we have that \[ \vec{u} \times \overrightarrow{0}=\overrightarrow{0} \times \vec{u}=\overrightarrow{0} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.