Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 784: 59

Answer

See explanation.

Work Step by Step

Let $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ , $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ be vectors of $\mathcal{R}^{3}$ \[ \begin{array}{rl} \vec{v}+\vec{u} & =\left\langle v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right\rangle \\ \Rightarrow\|\vec{v}+\vec{u}\| & =\sqrt{\left(v_{1}+u_{1}\right)^{2}+\left(v_{2}+u_{2}\right)^{2}+\left(v_{3}+u_{3}\right)^{2}} \\ \Rightarrow\|\vec{v}+\vec{u}\|^{2} & =\left(u_{1}^{2}+u_{2}^{2}+v_{3}^{2}\right)+\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)+2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\ & =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v} \\ & =[\|\vec{u}\|+\|\vec{v}\|]^{2}+2(\|\vec{u}\|\|\vec{v}\| \cos (\theta)-\|\vec{u}\|\|\vec{v}\|) \\ & =[\|\vec{u}\|+\|\vec{v}\|]^{2}-2(1-\cos (\theta))\|\vec{u}\|\|\vec{v}\| \\ \operatorname{since}|\cos (\theta)| \leq 1 & \operatorname{and}\|\vec{u}\|,\|\vec{v}\| \geq \\ & \|\vec{u}+\vec{v}\|^{2} \leq\left(\|\vec{u}\|^{2}+\|\vec{v}\|^{2}\right) \\ & =[|\vec{u}+\vec{v}||\leq||\vec{u}||+||\vec{v}| | \end{array} \] For example, if $\vec{u}=\vec{v}$ \[ \|\vec{u}+\vec{v}\|=\|2 \vec{u}\|=2\|\vec{u}\|=\|\vec{u}\|+\|\vec{u}\|=\|\vec{u}\|+\|\vec{v}\| \] For $\vec{v}=\langle 0,1\rangle$ and $\vec{u}=\langle 1,0\rangle$ where $\|\vec{v}\|=\|\vec{u}\|=1$ \[ \|\vec{v}+\vec{u}\|=\|\langle 1,1\rangle\|=\sqrt{1+1}=\sqrt{2}<2=1+1=\|\vec{v}\|+\|\vec{u}\| \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.