Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 784: 63

Answer

See explanation.

Work Step by Step

Let $B\left(b_{1}, b_{2}\right), C\left(c_{1}, c_{2}\right), and A\left(a_{1}, a_{2}\right)$ be the vertecies of the triangle. $M_{A B}=\left(\frac{b_{2}+a_{2}}{2}, \frac{b_{1}+a_{1}}{2}\right)$ is the middle point of the segment $A \vec{B}$ $M_{A C}=\left(\frac{c_{1}+a_{1}}{2}, \frac{c_{2}+a_{2}}{2}\right)$ is the middle point of the segment $A C$ Let $\mathbf{u}$ be the vector $\mathbf{u}= \vec{M}_{A C} M_{A B}$ \[ \begin{aligned} \vec{u}=\left\{\frac{a_{1}+c_{1}}{2}-\frac{b_{2}+a_{2}}{2}, \frac{a_{2}+c_{2}}{2}-\frac{b_{1}+a_{1}}{2}\right.&) \\ &=\left[\left\langle c_{1} c_{2}\right)-\left\langle b_{1}, b_{2}\right\rangle\right]\frac{1}{2}=\frac{1}{2} \vec{v} \end{aligned} \] where $\vec{v}$ is the vector $\overrightarrow{B C}$. Since $\frac{1}{2} \vec{v}=\vec{u},$ they are parallel vectors.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.