Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 782: 9

Answer

$a)$ \[ B(4,-4)=B(c, d) \] the endpoint. $\mathrm{b})$ \[ A(8,-1,-3) \] is the initial point.

Work Step by Step

a) Let $\vec{v}$ be a vector in 2 -space with initial point $A(a, b)$ and point $B(c, d),$; then \[ \vec{v}=\overrightarrow{A B}=\langle c-a, d-b\rangle=(d-b) \hat{\jmath}+(c-a) \hat{\imath} \] It's given that $\vec{v}=-2 \hat{\jmath}+3 \hat{\imath},$ so: \[ -2=-b+d \text { and } 3=-a+c \] We also get: \[ A(a, b)=A(1,-2) \Rightarrow b=-2 \text { and } a=1 \] and then \[ 4=c=a+3 \quad \text { and } \quad -4=-2+b=d \] So, we have that \[ B(4,-4)=B(c, d) \] is the terminal point of the vector. b) Let $A(a, b, c)$ the initial point, and then \[ \vec{v}=\overrightarrow{A B} \] where $B(5,0,-1)$ is the terminal point. So \[ \begin{array}{l} \langle-3,1,2\rangle=\langle 5-a, 0-b,-1-c\rangle \\ \quad -3=-a+5 \\ 1=-b+0 \\ 2=-c-1 \end{array} \Rightarrow\left\{\begin{array}{l} b=-1 \\ c=-3 \\ a=8 \end{array}\right. \] So $A(8,-1,-3)$ is the initial point
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.