Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.2 Vectors - Exercises Set 11.2 - Page 782: 14

Answer

$C) 3$ d) $\sqrt{3}$ a) $5 \quad$ b) 3

Work Step by Step

The norm of a given vector in $n$ -space: \[ \vec{v}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \] is $\|\vec{v}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}},$ and then a) For ( 3,4 ) we have that: \[ \|\vec{v}\|=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=5 \] b) For $\vec{v}=-\sqrt{7} \hat{\jmath}+\sqrt{2} \hat{\imath} =\langle\sqrt{2},-\sqrt{7}\rangle$ we have: \[ \|\vec{v}\|=\sqrt{(\sqrt{2})^{2}+(-\sqrt{7})^{2}}=\sqrt{7+2}=3 \] c) For $\vec{v}=\rangle 0,-3,0\langle$ we have: \[ \|\vec{v}\|=\sqrt{(-3)^{2}+0^{2}+0^{2}}=\sqrt{9}=3 \] d) For $\vec{v}=\hat{\imath}+\hat{\jmath}+\hat{k}=\langle 1,1,1\rangle$ we have: \[ \|\vec{v}\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.