Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.9 - Related Rates - 3.9 Exercises - Page 251: 4

Answer

The volume is increasing at $25600\pi \frac{mm^{3}}{s}$.

Work Step by Step

The radius of the sphere is $40 mm$. $V(r) = \frac{4}{3} \pi r^{3}$ $\frac{dV}{dt} = \frac{4}{3}\pi \times \frac{d(r^{3})}{dt}$ Use the chain rule $(\frac{dr}{dt})$: $\frac{dV}{dt} = \frac{4}{3}\pi \times \frac{d(r^{3})}{dt} \times \frac{dr}{dt}$ $\frac{dV}{dt} = \frac{4}{3}\pi \times 3r^{2} \times \frac{dr}{dt}$ $\frac{dV}{dt} = 4\pi r^{2} \times \frac{dr}{dt}$ $\frac{dr}{dt} = 4\frac{mm}{s}$ $\frac{dV}{dt} = 4\pi (40)^{2} \times (4)$ $\frac{dV}{dt} = 4\pi (1600) \times (4)$ $\frac{dV}{dt} = 4\pi (6400)$ $\frac{dV}{dt} = 25600\pi \frac{mm^{3}}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.