Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.6 - Limits at Infinity; Horizontal Asymptotes - 2.6 Exercises - Page 139: 67

Answer

$\lim\limits_{x \to \infty} f(x) = 5$

Work Step by Step

We can find $\lim\limits_{x \to \infty}\frac{10~e^x-27}{2~e^x}$: $\lim\limits_{x \to \infty}\frac{10~e^x-27}{2~e^x} = \lim\limits_{x \to \infty}\frac{10~e^x}{2~e^x}-\lim\limits_{x \to \infty}\frac{27}{2~e^x} = 5-0=5$ Note that this function is always less than 5 as $x$ approaches $\infty$, but it gets closer and closer to 5. We can find $\lim\limits_{x \to \infty}\frac{5\sqrt{x}}{\sqrt{x-1}}$: $\lim\limits_{x \to \infty}\frac{5\sqrt{x}}{\sqrt{x-1}} = 5 \times \lim\limits_{x \to \infty}\frac{\sqrt{x}}{\sqrt{x-1}} = (5)(1) = 5$ Note that this function is always greater than 5 as $x$ approaches $\infty$, but it gets closer and closer to 5. Since $\frac{10~e^x-27}{2~e^x} \lt f(x) \lt \frac{5\sqrt{x}}{\sqrt{x-1}}$ for all $x \gt 1$, then $\lim\limits_{x \to \infty} f(x) = 5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.