Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.5 - Continuity - 2.5 Exercises - Page 124: 14

Answer

Prove that $\lim\limits_{t\to2}g(t)=g(2)$

Work Step by Step

*NOTES TO REMEMBER: $f(x)$ is continuous at $a$ if and only if $$\lim\limits_{x\to a}f(x)=f(a)$$ We consider $\lim\limits_{t\to2}g(t)$ $=\lim\limits_{t\to2}\frac{t^2+5t}{2t+1}$ $=\frac{\lim\limits_{t\to2}(t^2+5t)}{\lim\limits_{t\to2}(2t+1)}$ $=\frac{\lim\limits_{t\to2}t^2+5\lim\limits_{t\to2}t}{2\lim\limits_{t\to2}t+\lim\limits_{t\to2}1}$ $=\frac{2^2+5\times2}{2\times2+1}$ $=g(2)$ Therefore, $g(t)$ is continuous at $2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.