Answer
See the explanation
Work Step by Step
Recall: $f(x)$ is continuous at $a$ if $\lim_{x\to a}f(x)=f(a)$.
$\lim_{x\to -1}f(x)=\lim_{x\to -1}(3x^2+(x+2)^5)$ Use the properties of limits
$=3\lim_{x\to -1}x^2+(\lim_{x\to -1} (x+2))^5$ Evaluate the limits by direct substitution
$=3(-1)^2+(-1+2)^5$
$=f(-1)$
Thus, $f(x)$ is continuous at $a=-1$.