Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.4 - Exponential Functions - 1.4 Exercises - Page 52: 1

Answer

(a) $-1$ (b) $\frac{1}{729}$ (c) $\frac{1}{x^{5/4}}$ (d) $x^2$ (e) $\frac{b^5}{9}$ (f) $\frac{2x^6}{9y}$

Work Step by Step

(a) $\frac{-2^6}{4^3}=\frac{-2^6}{(2^2)^3}=\frac{-2^6}{2^{3\cdot 2}}=\frac{-2^6}{2^6}=-\frac{2^6}{2^6}=-2^{6-6}=-2^0=-1$ (b) $\frac{(-3)^6}{9^6}=\frac{(-3)^{2\cdot 3}}{9^{6}}=\frac{((-3)^2)^3}{9^6}=\frac{9^3}{9^6}=9^{3-6}=9^{-3}=\frac{1}{9^3}=\frac{1}{729}$ (c) $\frac{1}{\sqrt[4]{x^5}}=\frac{1}{x^{5/4}}$ (d) $\frac{x^3\cdot x^n}{x^{n+1}}=\frac{x^{3+n}}{x^{n+1}}=x^{(3+n)-(n+1)}=x^{2}$ (e) $b^3(3b^{-1})^{-2}=b^3(3^{-2}b^{-1\cdot -2})=b^3(\frac{1}{3^2}\cdot b^2)=\frac{1}{3^2}\cdot b^3\cdot b^2=\frac{1}{9}b^{3+2}=\frac{1}{9}b^5=\frac{b^5}{9}$ (f) $\frac{2x^2y}{(3x^{-2}y)^2}=\frac{2x^2y}{3^2x^{-2\cdot 2}y^2}=\frac{2x^2y}{9x^{-4}y^2}=\frac{2x^{2-(-4)}y^{1-2}}{9}=\frac{2x^6y^{-1}}{9}=\frac{2x^6}{9y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.