Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Section 1.3 - New Functions from Old Functions - 1.3 Exercises - Page 45: 71

Answer

(a) See the explanation (b) See the explanation (c) See the explanation (d) $f(x)=\underbrace{\frac{1}{2}[(2^x+(x-3)^2)+(2^{-x}+(-x-3)^2)]}_{even}+\underbrace{\frac{1}{2}[(2^x+(x-3)^2)-(2^{-x}+(-x-3)^2)]}_{odd}$

Work Step by Step

(a) Recall: $E(x)$ is an even function if $E(-x)=E(x)$. Show that $E(x)$ is an even function: $E(-x)=f(-x)+f(-(-x))=f(-x)+f(x)=f(x)+f(-x)=E(x)$ Thus, $E(x)$ is an even function. (b) Recall: $O(x)$ is an odd function if $O(-x)=-O(x)$. Show that $O(x)$ is an odd function: $O(-x)=f(-x)-f(-(-x))=f(-x)-f(x)=-(f(x)-f(-x))=-O(x)$ Thus, $O(x)$ is an odd function. (c) Let $f(x)$ be a function. From part (a) and (b), we have shown that $E(x)=f(x)+f(-x)$ is an even function and $O(x)=f(x)-f(-x)$ is an odd function. Consequently, $(\frac{1}{2}E)(x)$ is an even function and $(\frac{1}{2}O)(x)$ is an odd function. Notice that $f(x)=\frac{1}{2}\cdot 2f(x)$ $=\frac{1}{2}\cdot [(f(x)+f(-x))+(f(x)-f(-x))]$ $=\frac{1}{2}\cdot (f(x)+f(-x))+\frac{1}{2}\cdot (f(x)-f(-x))$ $=\frac{1}{2}\cdot E(x)+\frac{1}{2}\cdot O(x)$ $=(\frac{1}{2}E)(x)+(\frac{1}{2}O)(x)$ Thus, $f(x)$ can be written as the sum of an even function $(\frac{1}{2}E)(x)$ and an odd function $(\frac{1}{2}O)(x)$. (d) Using the result in part (c), take $E(x)=f(x)+f(-x)=(2^x+(x-3)^2)+(2^{-x}+(-x-3)^2)$ and $O(x)=f(x)+f(-x)=(2^x+(x-3)^2)-(2^{-x}+(-x-3)^2)$. Then, $f(x)$ can be written as the sum of an even function $\frac{1}{2}[(2^x+(x-3)^2)+(2^{-x}+(-x-3)^2)]$ and an odd function $\frac{1}{2}[(2^x+(x-3)^2)-(2^{-x}+(-x-3)^2)]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.