Answer
$-3\displaystyle \frac{1}{3}$
Work Step by Step
$\displaystyle \left(\frac{-5}{-8} \right) \cdot\left(-5\frac{1}{3} \right)=$
Apply the equivalent fractions rule, $\quad \displaystyle \frac{a}{-b}=\frac{-a}{b}=-\frac{a}{b}$
... $\displaystyle \frac{-5}{-8}=-\frac{5}{-8}=-(-\frac{5}{8})=+\frac{5}{8}$
Also, write the mixed number as an improper fraction
$=\displaystyle \left(+\frac{5}{8} \right) \cdot\left(-\frac{16}{3} \right)$
Multiplying two numbers with different signs:
Multiply their absolute values; the sign of the result is $"-"$.
$=-\left(\displaystyle \frac{5}{8} \cdot \frac{16}{3} \right)$
Multiply fractions:
Reduce by the common factor, $8$.
$=-\left(\displaystyle \frac{5}{1} \cdot \frac{2}{3} \right)$
Now, multiply the numerators and place the product over the product of the denominators.
$=-\displaystyle \frac{10}{3}$
Write the improper fraction as a mixed number.
$=-3\displaystyle \frac{1}{3}$