Elementary Technical Mathematics

Published by Brooks Cole
ISBN 10: 1285199197
ISBN 13: 978-1-28519-919-1

Chapter 16 - Cumulative Review - Page 568: 25

Answer

The sum of the binary numbers $1110101$ and $10011$ is $10001000$.

Work Step by Step

Add the binary numbers as, $\begin{matrix} Carry, & 1& 1& & 1& 1& 1& \\ & 1& 1& 1& 0& 1& 0& 1&\\ +& & & 1& 0& 0& 1& 1& \\ & \text{ }\!\!\_\!\! & \text{ }\!\!\_\!\! &\text{ }\!\!\_\!\! &\text{ }\!\!\_\!\! &\text{ }\!\!\_\!\! &\text{ }\!\!\_\!\! &\text{ }\!\!\_\!\! \\ & 10& 0& 0& 1& 0& 0& 0& \\ \end{matrix}$ Now, check the result by decimal addition. Now, the equivalent decimal notation for the above binary number will be obtained by writing down the powers of two from right to left and adding them as, $\begin{align} & 1110101=1\times {{2}^{6}}+1\times {{2}^{5}}+1\times {{2}^{4}}+0\times {{2}^{3}}+1\times {{2}^{2}}+0\times {{2}^{1}}+1\times {{2}^{0}} \\ & =64+32+16+4+0+1 \\ & =117 \end{align}$ Also, $\begin{align} & 10011=1\times {{2}^{4}}+0\times {{2}^{3}}+0\times {{2}^{2}}+1\times {{2}^{1}}+1\times {{2}^{0}} \\ & =16+2+1 \\ & =19 \end{align}$ And, $\begin{align} & 10001000=1\times {{2}^{7}}+0\times {{2}^{6}}+0\times {{2}^{5}}+0\times {{2}^{4}}+1\times {{2}^{3}}+0\times {{2}^{2}}+0\times {{2}^{1}}+0\times {{2}^{0}} \\ & =128+8 \\ & =136 \end{align}$ Since, $117+19=136$ Thus, the obtained result is correct. Hence the sum of the binary numbers is $10001000$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.