Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.5 - Multiplying with More Than One Term and Rationalizing Denominators - Exercise Set - Page 551: 111

Answer

$7\sqrt{3}-7\sqrt{2}$

Work Step by Step

$\displaystyle \frac{2}{\sqrt{2}+\sqrt{3}}\color{red}{ \cdot\frac{ \sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} }=\frac{2(\sqrt{2}-\sqrt{3})}{(\sqrt{2})^{2}-(\sqrt{3})^{2}}$ $=\displaystyle \frac{2(\sqrt{2}-\sqrt{3})}{2-3}=\frac{2(\sqrt{2}-\sqrt{3})}{-1}\\\\=-2(\sqrt{2}-\sqrt{3})\\\\=-2\sqrt{2}+2\sqrt{3}$ $\sqrt{75}=\sqrt{25\cdot 3}=\sqrt{25}\cdot\sqrt{3}=5\sqrt{3}$ $\sqrt{50}=\sqrt{25\cdot 2}=\sqrt{25}\cdot\sqrt{2}=5\sqrt{2}$ $problem=-2\sqrt{2}+2\sqrt{3}+5\sqrt{3}-5\sqrt{2}$ ... add like terms $=7\sqrt{3}-7\sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.