Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Section 7.4 - Adding, Subtracting, and Dividing Radical Expressions - Exercise Set - Page 541: 113

Answer

$\frac{5\sqrt[5] {8x^2y^4}} {x}$.

Work Step by Step

The given expression is $=\frac{10y}{\sqrt[5] {4x^3y}}\cdot\frac{\sqrt[5] {8x^2y^4}}{\sqrt[5] {8x^2y^4}}$ Multiply the radicands and retain the common index. $=10y\cdot\frac{\sqrt[5] {8x^2y^4}}{\sqrt[5] {8x^2y^4\cdot 4x^3y}}$ Multiply the factors. Add exponents of common bases. $=10y\cdot\frac{\sqrt[5] {8x^2y^4}}{\sqrt[5] {32x^{2+3}y^{4+1}}}$ Simplify. $=10y\cdot\frac{\sqrt[5] {8x^2y^4}}{\sqrt[5] {32x^5y^5}}$ Divide the radicands and retain the common index. $=10y\cdot\sqrt[5] {\frac{8x^2y^4} {32x^5y^5}}$ Rewrite $32$ as $2^5$. $=10y\cdot\sqrt[5] {\frac{8x^2y^4} {2^5x^5y^5}}$ Simplify. $=\frac{10y\cdot \sqrt[5] {8x^2y^4}} {2xy}$ $=\frac{5y\cdot \sqrt[5] {8x^2y^4}} {x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.