Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 454: 53

Answer

The remainder is $0$. $\{-2,-1,2,5\}$.

Work Step by Step

Use synthetic division to divide the polynomial $x^4-4x^3-9x^2+16x+20$ by $x-c$, where $c=5$. $\begin{matrix} 5) &1&-4&-9&16&20 \\ & &5&5&-20 &-20\\ & --&--&--& --&--\\ & 1&1&-4&-4&0 ​\end{matrix}$ Use $1,1,-4,-4,0$ to write the quotient and the remainder. The degree of the first term of the quotient is one less than the degree of the first term of the dividend. The quotient is $x^3+x^2-4x-4$ and the remainder is $0$. The factor is $x-(5)=x-5$. We can write the given equation as $\Rightarrow (x-5)(x^3+x^2-4x-4)=0$. Now factor $x^3+x^2-4x-4$ Group terms. $\Rightarrow (x^3+x^2)+(-4x-4)$ Factor each group. $\Rightarrow x^2(x+1)-4(x+1)$ Factor out $(x+1)$. $\Rightarrow (x+1)(x^2-4)$ $\Rightarrow (x+1)(x^2-2^2)$ Use the special formula $A^2-B^2=(A+B)(A-B)$. $\Rightarrow (x+1)(x+2)(x-2)$ Back substitute in tthe given equation. $\Rightarrow (x-5)(x+1)(x+2)(x-2)=0$. Set each factor equal to zero. $x-5=0$ or $x+1=0$ or $x+2=0$ or $x-2=0$ Isolate $x$. $x=5$ or $x=-1$ or $x=-2$ or $x=2$ The solution set is $\{-2,-1,2,5\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.