Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 454: 37

Answer

$4x^3-9x^2+7x-6$.

Work Step by Step

The given expression can be written: $(22x-24+7x^3-29x^2+4x^4)(x+4)^{-1}$ $=(22x-24+7x^3-29x^2+4x^4)\div(x+4)$ Rewrite the dividend in descending powers of $x$. $\Rightarrow (4x^4+7x^3-29x^2+22x-24)\div(x+4)$ The value of $c$ is $-4$. Use synthetic division to divide the polynomial $4x^4+7x^3-29x^2+22x-24$ by $x-c=x-(-4)$: $\begin{matrix} -4) &4&7&-29&22&-24 \\ & &-16&36&-28 &24\\ & --&--&--& --&--\\ & 4&-9&7&-6&0 ​\end{matrix}$ The quotient is $4x^3-9x^2+7x-6$ and the remainder is zero. Hence, the solution is $4x^3-9x^2+7x-6$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.