Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.4 - Division of Polynomials - Exercise Set - Page 447: 86

Answer

$(x-3)(x+2)(2x-1)$.

Work Step by Step

The given dividend $=2x^3-3x^2-11x+6$. Divisor $=x-3$ $\begin{matrix} & 2x^2 & +3x &-2 & & \leftarrow &Quotient\\ &-- &-- &--&--& \\ x-3) &2x^3&-3x^2&-11x&+6 & \\ & 2x^3 & -6x^2 & & & \leftarrow &2x^2(x-3) \\ & -- & -- & & & \leftarrow &subtract \\ & 0 & 3x^2 & -11x & & \\ & & 3x^2 & -9x & & \leftarrow & 3x(x-3) \\ & & -- & -- & & \leftarrow & subtract \\ & & 0&-2x &+6 & \\ & & & -2x& +6 & \leftarrow & -2(x-3) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0 & 0 & \leftarrow & Remainder \end{matrix}$ The Quotient is $2x^2+3x-2$. We can say that $(x-3)$ is a factor of $2x^3-3x^2-11x+6$ because the remainder is $0$. Now factor $2x^2+3x-2$. Rewrite the middle term $3x$ as $4x-x$. $\Rightarrow 2x^2+4x-x-2$ Group terms. $\Rightarrow (2x^2+4x)+(-x-2)$ Factor each group. $\Rightarrow 2x(x+2)-1(x+2)$ Factor out $x+2$. $\Rightarrow (x+2)(2x-1)$ The complete factors are: $=(x-3)(x+2)(2x-1)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.