Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.4 - Division of Polynomials - Exercise Set - Page 446: 78

Answer

$x^{2n}-x^n+1$.

Work Step by Step

The given expression is $\Rightarrow (x^{3n}+1)\div (x^n+1)$ Write the dividend in descending powers of $x$. $\Rightarrow (x^{3n}+0x^{2n}+0x^n+1)\div (x^n+1)$ $\begin{matrix} & x^{2n} & -x^n &+1 & & \leftarrow &Quotient\\ &-- &-- &--&--& \\ x^n+1) &x^{3n}&+0x^{2n}&+0x^{n} &+1 \\ & x^{3n} & +x^{2n} & & & \leftarrow &x^{2n}(x^n+1) \\ & -- & -- & & & \leftarrow &subtract \\ & 0 & -x^{2n} & +0x^n & & \\ & & -x^{2n} & -x ^n & & \leftarrow & -x^{n}(x^n+1) \\ & & -- & -- & & \leftarrow & subtract \\ & & 0&x^n &+1 & \\ & & & x^n&+1 & \leftarrow & 1(x^n+1)) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0 & 0 & \leftarrow & Remainder \end{matrix}$ The quotient $x^{2n}-x^n+1$. $x^n+1$ is a factor of the dividend $x^{3n}+1$ because the remainder is zero. The solution is $=x^{2n}-x^n+1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.