Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.4 - Division of Polynomials - Exercise Set - Page 446: 77

Answer

$ x^{2n} +x^n +3+\frac{3}{x^n-5}$.

Work Step by Step

The given expression is $\Rightarrow (x^{3n}-4x^{2n}-2x^n-12)\div (x^n-5)$ $\begin{matrix} & x^{2n} & +x^n &+3 & & \leftarrow &Quotient\\ &-- &-- &--&--& \\ x^n-5) &x^{3n}&-4x^{2n}&-2x^n&-12 & \\ & x^{3n} & -5x^{2n} & & & \leftarrow &x^{2n}(x^n-5) \\ & -- & -- & & & \leftarrow &subtract \\ & 0 & x^{2n} & -2x^n & & \\ & & x^{2n} & -5x ^n & & \leftarrow & x^{n}(x^n-5) \\ & & -- & -- & & \leftarrow & subtract \\ & & 0&3x^n &-12 & \\ & & & 3x^n&-15 & \leftarrow & 3(x^n-5)) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0 & 3 & \leftarrow & Remainder \end{matrix}$ The solution is $\Rightarrow Quotient +\frac{Remainder}{Divisor}$. Substitute all values. $\Rightarrow x^{2n} +x^n +3+\frac{3}{x^n-5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.