Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 438: 68

Answer

$ \frac{x^4+3x^2+1}{x^3+2x}$.

Work Step by Step

The given expression is $\Rightarrow x+\frac{1}{x+\frac{1}{x+\frac{1}{x}}}$ Start with the lowest denominator. $\Rightarrow x+\frac{1}{x+\frac{1}{\frac{x}{1}+\frac{1}{x}}}$ The LCD of the lowest denominator is $x$. Multiply the numerator and the denominator by $x$. $\Rightarrow x+\frac{1}{x+\frac{1}{\frac{x^2}{x}+\frac{1}{x}}}$ $\Rightarrow x+\frac{1}{x+\frac{1}{\frac{x^2+1}{x}}}$ Invert the divisor and multiply. $\Rightarrow x+\frac{1}{x+\frac{x}{x^2+1}}$ Solve the lowest denominator. $\Rightarrow x+\frac{1}{\frac{x}{1}+\frac{x}{x^2+1}}$ The LCD of the lowest denominator is $(x^2+1)$. Multiply the numerator and the denominator by $(x^2+1)$. $\Rightarrow x+\frac{1}{\frac{x(x^2+1)}{(x^2+1)}+\frac{x}{x^2+1}}$ $\Rightarrow x+\frac{1}{\frac{x(x^2+1)+x}{(x^2+1)}}$ Invert the divisor and multiply. $\Rightarrow x+\frac{(x^2+1)}{x(x^2+1)+x}$ Use the distributive property. $\Rightarrow x+\frac{(x^2+1)}{x^3+x+x}$ Simplify. $\Rightarrow \frac{x}{1}+\frac{(x^2+1)}{x^3+2x}$ The LCD of the denominators is $(x^3+2x)$. Multiply the numerator and the denominator by $(x^3+2x)$. $\Rightarrow \frac{x(x^3+2x)}{(x^3+2x)}+\frac{(x^2+1)}{(x^3+2x)}$ $\Rightarrow \frac{x(x^3+2x)+(x^2+1)}{(x^3+2x)}$ Use the distributive property. $\Rightarrow \frac{x^4+2x^2+x^2+1}{(x^3+2x)}$ Simplify. $\Rightarrow \frac{x^4+3x^2+1}{x^3+2x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.