Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 438: 67

Answer

$ \frac{1}{(x+1)(x+h+1)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}$ Multiply the numerator and the denominator by $(x+1)(x+h+1)$. $\Rightarrow \frac{(x+1)(x+h+1)}{(x+1)(x+h+1)}\cdot \frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}$ Use the distributive property in the numerator to multiply every term by the LCD. $\Rightarrow \frac{(x+1)(x+h+1)\cdot\frac{x+h}{x+h+1}-(x+1)(x+h+1)\cdot\frac{x}{x+1}}{(x+1)(x+h+1)\cdot h}$ Simplify. $\Rightarrow \frac{(x+1)(x+h)-(x+h+1)(x)}{(x+1)(x+h+1)\cdot h}$ Apply FOIL method and the distributive property. $\Rightarrow \frac{x^2+x+xh+h-x^2-xh-x}{(x+1)(x+h+1)\cdot h}$ Simplify. $\Rightarrow \frac{h}{(x+1)(x+h+1)\cdot h}$ Cancel common terms. $\Rightarrow \frac{1}{(x+1)(x+h+1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.