Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 430: 102

Answer

$\frac{x-1}{x+3}$.

Work Step by Step

The given expression is $\Rightarrow \left (1-\frac{1}{x} \right )\left (1-\frac{1}{x+1} \right )\left (1-\frac{1}{x+2} \right )\left (1-\frac{1}{x+3} \right )$ Multiply the numerators and the denominators to equal all denominators. $\Rightarrow \left (\frac{x}{x}-\frac{1}{x} \right )\left (\frac{x+1}{x+1}-\frac{1}{x+1} \right )\left (\frac{x+2}{x+2}-\frac{1}{x+2} \right )\left (\frac{x+3}{x+3}-\frac{1}{x+3} \right )$ Add all the numerators in the bracket because denominators are equal. $\Rightarrow \left (\frac{x-1}{x} \right )\left (\frac{x+1-1}{x+1} \right )\left (\frac{x+2-1}{x+2} \right )\left (\frac{x+3-1}{x+3} \right )$ Simplify. $\Rightarrow \left (\frac{x-1}{x} \right )\left (\frac{x}{x+1} \right )\left (\frac{x+1}{x+2} \right )\left (\frac{x+2}{x+3} \right )$ Cancel common terms. $\Rightarrow \frac{x-1}{x+3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.