Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.2 - Adding and Subtracting Rational Expressions - Exercise Set - Page 430: 101

Answer

$\frac{1}{x^{2n}-1}$.

Work Step by Step

The given expression is $\Rightarrow \frac{1}{x^n-1}-\frac{1}{x^n+1}-\frac{1}{x^{2n}-1}$ Let $x^n=t$. $\Rightarrow \frac{1}{t-1}-\frac{1}{t+1}-\frac{1}{t^{2}-1}$ Factor $t^2-1$. $=t^2-1^2$ Use the special formula $a^2-b^2=(a+b)(a-b)$. $=(t+1)(t-1)$ $\Rightarrow \frac{1}{t-1}-\frac{1}{t+1}-\frac{1}{(t+1)(t-1)}$ The LCD of the denominators is $(t+1)(t-1)$. Multiply the numerators and the denominators $\Rightarrow \frac{(t+1)}{(t+1)(t-1)}-\frac{(t-1)}{(t+1)(t-1)}-\frac{1}{(t+1)(t-1)}$ Add the numerators because all denominators are equal. $\Rightarrow \frac{(t+1)-(t-1)-1}{(t+1)(t-1)}$ Simplify. $\Rightarrow \frac{t+1-t+1-1}{(t+1)(t-1)}$ Add like terms. $\Rightarrow \frac{1}{(t+1)(t-1)}$ Use the special formula $(a+b)(a-b)=a^2-b^2$. $\Rightarrow \frac{1}{(t^2-1^2)}$ Back substitute $t=x^n$. $\Rightarrow \frac{1}{x^{2n}-1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.