Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Section 4.1 - Solving Linear Inequalities - Exercise Set - Page 265: 91

Answer

$\{(-1,-1,2)\}$.

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 2x& -y &-z&=&-3& ...... (1) \\ 3x& -2y & -2z&=&-5& ...... (2)\\ -x& +y &+2z &=&4& ...... (3) \end{matrix}\right.$ Addition method:- Step 1:- Reduce the system to two equations in two variables. Multiply the equation (1) by $2$. $\Rightarrow 4x-2y -2z=-6 $ ...... (4) Add equation (3) and (4). $\Rightarrow -x+y+2z+4x-2y -2z=4-6 $ Simplify. $\Rightarrow 3x-y =-2 $ ...... (5) Add equation (2) and (3). $\Rightarrow 3x-2y-2z-x+y +2z=-5+4 $ $\Rightarrow 2x-y=-1 $ ...... (6) Step 2:- Solve the two equations from the step 1. Multiply the equation (6) by $-1$. $\Rightarrow -2x+y=1 $ ...... (7) Add equation (5) and (7). $\Rightarrow 3x-y -2x+y=-2+1 $ Simplify. $\Rightarrow x=-1 $ Step 3:- Use back-substitution to find the second variable. Substitute the value of $x$ into equation (7). $\Rightarrow -2(-1)+y =1$ Simplify. $\Rightarrow 2+y =1$ Subtract $2$ from both sides. $\Rightarrow 2+y -2=1-2$ Add like terms. $\Rightarrow y =-1$ Step 4:- Use back-substitution to find the third variable. Substitute the values of $x$ and $y$ into equation (3) $\Rightarrow -(-1)+(-1)+2z =4$ Simplify. $\Rightarrow 1-1+2z =4$ $\Rightarrow 2z =4$ Divide both sides by $2$. $\Rightarrow z =2$ The solution set is $\{(x,y,z)\}=\{(-1,-1,2)\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.