Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Section 4.1 - Solving Linear Inequalities - Exercise Set - Page 262: 39

Answer

$(-\infty,2)$. The number line is shown below.

Work Step by Step

The given expression is $\Rightarrow 2(x+3)>6-\{4[x-(3x-4)-x]+4\}$ Apply the distributive property and clear the parentheses. $\Rightarrow 2x+6>6-\{4[x-3x+4-x]+4\}$ Add like terms. $\Rightarrow 2x+6>6-\{4[-3x+4]+4\}$ Apply the distributive property and clear the square bracket. $\Rightarrow 2x+6>6-\{-12x+16+4\}$ Add like terms. $\Rightarrow 2x+6>6-\{-12x+20\}$ Apply distributive property and clear the curly bracket. $\Rightarrow 2x+6>6+12x-20$ Add like terms. $\Rightarrow 2x+6>12x-14$ Add $-2x+14$ to both sides. $\Rightarrow 2x+6-2x+14>12x-14-2x+14$ Simplify. $\Rightarrow 20>10x$ Divide both sides by $10$. $\Rightarrow \frac{20}{10}>\frac{10x}{10}$ Simplify. $\Rightarrow 2>x$ The solution set is $(-\infty,2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.