Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 4 - Mid-Chapter Check Point - Page 286: 13

Answer

$(-\infty,-10]\cup[2,\infty)$.

Work Step by Step

The given expression is $\Rightarrow 7-\left | \frac{x}{2}+2\right |\leq4$ Subtract $7$ from both sides. $\Rightarrow 7-\left | \frac{x}{2}+2\right |-7\leq4-7$ Simplify. $\Rightarrow -\left | \frac{x}{2}+2\right |\leq-3$ Multiply all parts by −1 and change the sense of the inequality. $\Rightarrow (-1)(-\left | \frac{x}{2}+2\right |)\geq(-1)(-3)$ Simplify. $\Rightarrow \left | \frac{x}{2}+2\right |\geq3$ Rewrite the inequality without absolute value bars. $\Rightarrow \frac{x}{2}+2\leq-3$ or $\frac{x}{2}+2\geq3$ Solve each inequality separately. Subtract $2$ from all parts. $\Rightarrow \frac{x}{2}+2-2\leq-3-2$ or $\frac{x}{2}+2-2\geq3-2$ Simplify. $\Rightarrow \frac{x}{2}\leq-5$ or $\frac{x}{2}\geq1$ Multiply all parts by $2$. $\Rightarrow (2)\cdot \frac{x}{2}\leq(2)\cdot(-5)$ or $(2)\cdot\frac{x}{2}\geq(2)\cdot1$ Simplify. $\Rightarrow x\leq-10$ or $x\geq2$ The solution set is less than or equal to $-10$ or greater than or equal to $2$. The interval notation is $(-\infty,-10]\cup[2,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.