Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Section 3.1 - Systems of Linear Equations in Two Variables - Exercise Set - Page 193: 103

Answer

$\left (\frac{2}{3},1 \right)$.

Work Step by Step

The given system of equations is $\Rightarrow y=3-3x$ ...... (1) $\Rightarrow 3x+4y=6$ ...... (2) Substitute the value of $y$ from equation (1) to equation (2). $\Rightarrow 3x+4(3-3x)=6$ Simplify. $\Rightarrow 3x+12-12x=6$ Add like terms. $\Rightarrow 12-9x=6$ Subtract $12$ from both sides. $\Rightarrow 12-9x-12=6-12$ Simplify. $\Rightarrow -9x=-6$ Divide both sides by $-9$. $\Rightarrow \frac{-9x}{-9}=\frac{-6}{-9}$ Simplify. $\Rightarrow x=\frac{2}{3}$ Plug the value of $x$ into equation (1). $\Rightarrow y=3-3\left( \frac{2}{3}\right)$ Cancel common terms. $\Rightarrow y=3-2$ Add like terms. $\Rightarrow y=1$ To check solution plug $\left (\frac{2}{3},1 \right)$ into equation (2). $\Rightarrow 3\left( \frac{2}{3}\right)+4(1)=6$ $\Rightarrow 2+4=6$ $\Rightarrow 6=6$ True. Hence, the solution set is $\left (\frac{2}{3},1 \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.