Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 3 - Mid-Chapter Check Point - Page 220: 7

Answer

$\{\left ( -1,2,-2\right )\}$.

Work Step by Step

The given system of equations is $\Rightarrow 2x-y+2z= -8$...... (1) $\Rightarrow x+2y-3z= 9 $...... (2) $\Rightarrow 3x-y-4z= 3$...... (3) Multiply equation (1) by $2$ and add to equation (2). $\Rightarrow 2(2x-y+2z)+x+2y-3z= 2(-8)+9$ Apply distributive property. $\Rightarrow 4x-2y+4z+x+2y-3z= -16+9$ Simplify. $\Rightarrow 5x+z= -7$...... (4). Multiply equation (3) by $2$ and add to equation (2). $\Rightarrow 2(3x-y-4z)+x+2y-3z= 2(3)+9$ Apply distributive property. $\Rightarrow 6x-2y-8z+x+2y-3z= 6+9$ Simplify. $\Rightarrow 7x-11z= 15$...... (5). Multiply equation (4) by $11$ and add to equation (5). $\Rightarrow 11(5x+z)+7x-11z= 11(-7)+15$ Apply distributive property. $\Rightarrow 55x+11z+7x-11z= -77+15$ $\Rightarrow 62x= -62$ Divide both sides by $62$. $\Rightarrow \frac{62x}{62}= \frac{-62}{62}$ Simplify. $\Rightarrow x= -1$ Plug the value of $x$ into equation (4). $\Rightarrow 5(-1)+z= -7$ Simplify. $\Rightarrow -5+z= -7$ Add $5$ to both sides. $\Rightarrow -5+z+5= -7+5$ Simplify. $\Rightarrow z= -2$ Substitute the values of $x$ and $z$ into equation (2). $\Rightarrow -1+2y-3(-2)= 9 $ Simplify. $\Rightarrow -1+2y+6= 9 $ $\Rightarrow 2y+5= 9 $ Subtract $5$ from both sides. $\Rightarrow 2y+5-5= 9-5 $ Add like terms. $\Rightarrow 2y= 4 $ Divide both sides by $2$. $\Rightarrow \frac{2y}{2}= \frac{4}{2} $ Simplify. $\Rightarrow y= 2 $ The solution set is $\{\left ( x,y,z\right )\}=\{\left ( -1,2,-2\right )\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.