Answer
$(-40,74)$, $(97,-200)$
Work Step by Step
The $x-$ intercept is $-3$.
The coordinates of the point are $(-3,0)$.
The $y-$ intercept is $-6$.
The coordinates of the point are $(0,-6)$.
Slope of line is
$\Rightarrow m=\frac{change\;in\;y}{change \; in\; x}$
$\Rightarrow m=\frac{-6-0}{0-(-3)}$
Simplify.
$\Rightarrow m=\frac{-6}{3}$
$\Rightarrow m=-2$
The standard slope-intercept form is
$\Rightarrow y=mx+c$,
wher, $m=$ slope and $c=$ $y-$intercept.
Substitute all values.
$\Rightarrow y=-2x-6$
Now plug $x=-40$ into the line equation and solve for $y$.
$\Rightarrow y=-2(-40)-6$
Simplify.
$\Rightarrow y=80-6$
$\Rightarrow y=74$
Plug $y=-200$ into the line equation and solve for $x$.
$\Rightarrow -200=-2x-6$
Add $6$ to both sides.
$\Rightarrow -200+6=-2x-6+6$
Simplify.
$\Rightarrow -194=-2x$
Divide both sides by $-2$.
$\Rightarrow \frac{-194}{-2}=\frac{-2x}{-2}$
Simplify.
$\Rightarrow 97=x$
The missing coordinates are
$(-40,74)$ and $(97,-200)$.