Answer
The statement is false.
$$\frac{8 \times 10^{30}}{4 \times 10^{-5}}= 2\times10^{35}$$
Work Step by Step
$$\frac{8 \times 10^{30}}{4 \times 10^{-5}} = 2\times10^{25}$$
Recall the division of numbers in scientific notation: $\frac{a \times 10^{n}}{b \times 10^{m}} = (\frac{a}{b}) \times 10^{n-m}$
Thus,
$$\frac{8 \times 10^{30}}{4 \times 10^{-5}} = (\frac{8}{4}) \times 10^{30-(-5)}$$
$$=2 \times 10^{35}$$
The statement is false.