Answer
$1$
Work Step by Step
Using $\log_b b=1$ and $\log_bx^y=y\log_bx$, the given expression, $
\log_3(\log_5 125)
,$ simplifies to
\begin{array}{l}\require{cancel}
\log_3(\log_5 5^3)
\\\\=
\log_3(3\cdot1)
\\\\=
\log_33
\\\\=
1
.\end{array}