Answer
$x=\dfrac{23}{3}$
Work Step by Step
Using the properties of equality, the solution to the given equation, $
\dfrac{5}{6}(3x+1)=20
$, is
\begin{array}{l}\require{cancel}
\dfrac{5}{6}(3x)+\dfrac{5}{6}(1)=20
\\\\
6\left( \dfrac{5}{6}(3x)+\dfrac{5}{6}(1) \right)=20(6)
\\\\
5(3x)+5(1)=120
\\\\
15x+5=120
\\\\
15x=120-5
\\\\
15x=115
\\\\
x=\dfrac{115}{15}
\\\\
x=\dfrac{\cancel{5}\cdot23}{\cancel{5}\cdot3}
\\\\
x=\dfrac{23}{3}
.\end{array}