Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 896: 92

Answer

$a_1=\frac{3}{2}$ $a_2=\frac{3}{2}$ $a_3=\frac{9}{8}$ $a_4=\frac{3}{4}$ $a_5=\frac{15}{32}$ $S_{5}=\frac{171}{32}=5.34375$

Work Step by Step

We have to find first five terms of the sequence where $a_n=\frac{1}{2^n}\log1000^n=\frac{1}{2^n}\log 10^{3n}=\frac{3n}{2^n}$ and $S_{5}$. Calculate the first $5$ terms using the formula for the general term: $$\begin{align*} a_1&=\frac{3\cdot 1}{2^1}=\frac{3}{2}\\ a_2&=\frac{3\cdot 2}{2^2}=\frac{3}{2}\\ a_3&=\frac{3\cdot 3}{2^3}=\frac{9}{8}\\ a_4&=\frac{3\cdot 4}{2^4}=\frac{3}{4}\\ a_5&=\frac{3\cdot 5}{2^5}=\frac{15}{32} \end{align*}$$ Determine $S_5$: $$\begin{align*} S_{5}&=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\\ &=\frac{3}{2}+\frac{3}{2}+\frac{9}{8}+\frac{3}{4}+\frac{15}{32}\\ &=3+\frac{51}{32}+\frac{3}{4}\\ &=3+\frac{75}{32}\\ &=\frac{171}{32} \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.