Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.4 Nonlinear Systems of Equations - 13.4 Exercise Set - Page 879: 6

Answer

True statement

Work Step by Step

Let the two second-degree equations are $3{{x}^{2}}+2{{y}^{2}}=12$ …… (1) ${{x}^{2}}+2{{y}^{2}}=4$ …… (2) Subtract the equations: $\begin{align} & \left( 3{{x}^{2}}-{{x}^{2}} \right)+\left( 2{{y}^{2}}-2{{y}^{2}} \right)=12-4 \\ & 2{{x}^{2}}+0=8 \\ & {{x}^{2}}=\frac{8}{2} \\ & {{x}^{2}}=4 \end{align}$ Simplify more, $\begin{align} & {{x}^{2}}=4 \\ & x=\pm \sqrt{4} \\ & x=\pm 2 \end{align}$ $x=2$ And $x=-2$ Substitute $x=2$ in equation (2), and solve for y: $\begin{align} & {{x}^{2}}+2{{y}^{2}}=4 \\ & {{\left( 2 \right)}^{2}}+2{{y}^{2}}=4 \\ & 4+2{{y}^{2}}=4 \\ & 2{{y}^{2}}=0 \end{align}$ $\begin{align} & 2{{y}^{2}}=0 \\ & {{y}^{2}}=0 \\ & y=0 \end{align}$ The ordered pair is $\left( 2,0 \right)$. Substitute $x=-2$ in equation (1), and solve for y: $\begin{align} & 3{{x}^{2}}+2{{y}^{2}}=12 \\ & 3{{\left( -2 \right)}^{2}}+2{{y}^{2}}=12 \\ & 12+2{{y}^{2}}=12 \\ & 2{{y}^{2}}=0 \end{align}$ $\begin{align} & 2{{y}^{2}}=0 \\ & {{y}^{2}}=0 \\ & y=0 \end{align}$ The ordered pair is $\left( -2,0 \right)$. Thus, the elimination method is best.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.