Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 13 - Conic Sections - 13.4 Nonlinear Systems of Equations - 13.4 Exercise Set - Page 879: 5

Answer

True statement

Work Step by Step

Suppose a first-degree equation is $y=2x+1$ …… (1) And a second-degree equation is ${{y}^{2}}=xy+3$ …… (2) Now, solve using equations 1 and 2: $\begin{align} & {{y}^{2}}=xy+3 \\ & {{\left( 2x+1 \right)}^{2}}=x\left( 2x+1 \right)+3 \\ & 4{{x}^{2}}+1+4x=2{{x}^{2}}+x+3 \\ & \left( 4{{x}^{2}}-2{{x}^{2}} \right)+\left( 4x-x \right)+\left( 1-3 \right)=0 \end{align}$ Simplify: $2{{x}^{2}}+3x-2=0$ Factor the equation, $\begin{align} & \left( 2x-1 \right)\left( x+2 \right)=0 \\ & \\ \end{align}$ Simplify both the factors, $\begin{align} & 2x-1=0 \\ & 2x=1 \\ & x=\frac{1}{2} \end{align}$ And $\begin{align} & x+2=0 \\ & x=-2 \end{align}$ Substitute $x=\frac{1}{2}$ in equation (2), and solve for y: $\begin{align} & y=2x+1 \\ & =2\left( \frac{1}{2} \right)+1 \\ & =1+1 \\ & =2 \end{align}$ The ordered pair is $\left( \frac{1}{2},2 \right)$. Substitute $x=-2$ in equation (1), and solve for y: $\begin{align} & {{y}^{2}}=xy+3 \\ & {{y}^{2}}=\left( -2 \right)y+3 \\ & {{y}^{2}}+2y-3=0 \\ & \left( y-1 \right)\left( y+3 \right)=0 \end{align}$ Simplify both the factors, $\begin{align} & y-1=0 \\ & y=1 \end{align}$ And $\begin{align} & y+3=0 \\ & y=-3 \end{align}$ The ordered pairs are $\left( -2,1 \right)$ and $\left( -2,-3 \right)$. Thus, the systems containing one first-degree equation and one second-degree equation are most easily solved using the substitution method.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.