Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 837: 55

Answer

a) The apparent stellar magnitude of the sun is approximately $-26.9$. b) The received intensity of light is approximately $1.58\times {{10}^{-17}}\ \text{W/}{{\text{m}}^{2}}$.

Work Step by Step

a) $m\left( I \right)=-\left( 19+2.5\cdot \log I \right)$ …… (1) Now, since, the intensity of sun light is $1390\ \text{W/}{{\text{m}}^{2}}$, substitute $1390\ \text{W/}{{\text{m}}^{2}}$ in equation-1: $\begin{align} & m\left( I \right)=-\left( 19+2.5\cdot \log I \right) \\ & m\left( 1390 \right)=-\left( 19+2.5\cdot \log \left( 1390 \right) \right) \\ & m=-\left( 19+2.5\cdot \left( 3.143 \right) \right) \\ & m=-\left( 19+7.857 \right) \end{align}$ Further simplified, $\begin{align} & m=-\left( 19+7.857 \right) \\ & m=-26.857 \\ & m\approx -26.9 \end{align}$ b) $m\left( I \right)=-\left( 19+2.5\cdot \log I \right)$ …… (1) $\begin{align} & m\left( I \right)=-\left( 19+2.5\cdot \log I \right) \\ & 23=-\left( 19+2.5\cdot \log I \right) \\ & -23=19+2.5\cdot \log I \\ & -42=2.5\cdot \log I \end{align}$ Further simplified, $\begin{align} & -42=2.5\cdot \log I \\ & \frac{-42}{2.5}=\log I \\ & -16.8=\log I \\ & {{10}^{-16.8}}=I \end{align}$ Further simplified, $\begin{align} & {{10}^{-16.8}}=I \\ & 1.58\times {{10}^{-17}}\approx I \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.