Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 774: 42

Answer

$\underline{\left( -1,0 \right)\cup \left( 3,\infty \right)}$.

Work Step by Step

Rewrite the given inequality by subtracting $2{{x}^{2}}$ from both the sides of the inequality $\begin{align} & {{x}^{3}}-3x-2{{x}^{2}}>2{{x}^{2}}-2{{x}^{2}} \\ & {{x}^{3}}-3x-2{{x}^{2}}>0 \\ \end{align}$ Consider the “related” function, $\begin{align} & f\left( x \right)=0 \\ & {{x}^{3}}-3x-2{{x}^{2}}=0 \end{align}$ Since $f\left( x \right)$ is a third degree equation, $f\left( x \right)$ has three zeros. Factor out $x$ from the above equation. $\begin{align} & x\left( {{x}^{2}}-3-2x \right)=0 \\ & x\left( {{x}^{2}}-2x-3 \right)=0 \\ & x\left( {{x}^{2}}-3x+x-3 \right)=0 \\ & x\left( x\left( x-3 \right)+\left( x-3 \right) \right)=0 \end{align}$ Apply the zero product rule, $\begin{align} & x\left( x+1 \right)\left( x-3 \right)=0 \\ & x=0\text{ or }x+1=0\text{ or }x-3=0 \\ & x=0\text{ or }x=-1\text{ or }x=3 \\ \end{align}$ Thus the zeros of $f\left( x \right)$are $0,-1\text{ and }3$. Select one test value from each interval and determine the sign of $f\left( x \right)$ over that interval. For interval A: $\begin{align} & f\left( -2 \right)=-2\left( -2+1 \right)\left( -2-3 \right) \\ & =\left( -2 \right)\left( -1 \right)\left( -5 \right) \\ & =-10 \end{align}$ Thus $f\left( -2 \right)$ is negative. For interval B: $\begin{align} & f\left( -\frac{1}{2} \right)=-\frac{1}{2}\left( -\frac{1}{2}+1 \right)\left( -\frac{1}{2}-3 \right) \\ & =\left( -\frac{1}{2} \right)\cdot \left( \frac{1}{2} \right)\cdot \left( -\frac{7}{2} \right) \\ & =\frac{7}{8} \end{align}$ Thus $f\left( -\frac{1}{2} \right)$ is positive. For interval C: $\begin{align} & f\left( 1 \right)=1\left( 1+1 \right)\left( 1-3 \right) \\ & =1\cdot 2\cdot \left( -2 \right) \\ & =-4 \end{align}$ Thus $f\left( 1 \right)$ is negative. For interval D: $\begin{align} & f\left( \frac{7}{2} \right)=\frac{7}{2}\left( \frac{7}{2}+1 \right)\left( \frac{7}{2}-3 \right) \\ & =\frac{7}{2}\cdot \frac{9}{2}\cdot \frac{1}{2} \\ & =\frac{63}{8} \end{align}$ Thus $f\left( \frac{7}{2} \right)$ is positive. Indicate the sign of $f\left( x \right)$ on the number line. Look for the solution of ${{x}^{3}}-3x-2{{x}^{2}}>0$ The calculations above indicate that $f\left( x \right)$ is positive for any number in intervals B and D. Therefore the solution set of the original inequality is $\left( -1,0 \right)\cup \left( 3,\infty \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.