Answer
$\dfrac{x-3\sqrt{x}}{x-9}$
Work Step by Step
Multiplying by the conjugate of the denominator and using $(a+b)(a-b)=a^2-b^2,$ the given expression, $
\dfrac{\sqrt{x}}{\sqrt{x}+3}
,$ simplifies to
\begin{array}{l}\require{cancel}
\dfrac{\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-3}
\\\\=
\dfrac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x})^2-(3)^2}
\\\\=
\dfrac{x-3\sqrt{x}}{x-9}
.\end{array}