Answer
$= \frac{7x^{2}}{9y^{2}}$
Work Step by Step
1. Simplify $\frac{56}{72}$
$= \frac{28}{36}$
$= \frac{14}{18}$
$= \frac{7}{9}$
2. Simplify $\frac{x^{3}y}{xy^{3}}$
a) Cancel out $x$ from the numerator and denominator. This leaves you with $x^{2}$ in the numerator and $1$ in the denominator.
b) Cancel out $y$ from the numerator and denominator. This leaves you with $1$ in the numerator and $y^{2}$ in the denominator.
$= \frac{x^{2}y}{1y^{3}}$
$= \frac{x^{2}(1)}{1y^{2}}$
$= \frac{x^{2}}{y^{2}}$
3. Multiply the components in Step #1 and #2 together:
$= \frac{7}{9}(\frac{x^{2}}{y^{2}})$
$= \frac{7x^{2}}{9y^{2}}$