Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.3 Terminology for Systems of Linear Equations - Problems - Page 145: 24

Answer

$x'=Ax+b=\begin{bmatrix} -e^t -te^t\\ -9e^{-t} \\ e^t+te^t-6e^{-t} \end{bmatrix}$

Work Step by Step

$x'=\begin{bmatrix} -e^t -te^t\\ -9e^{-t} \\ e^t+te^t-6e^{-t} \end{bmatrix}$ $Ax+b=\begin{bmatrix} 1 & 0 & 0\\ 2& -3 &2\\ 1 & -2 & 2 \end{bmatrix}.\begin{bmatrix} -te^t\\ 9e^{-t}\\ te^t+6e^{-t} \end{bmatrix}+\begin{bmatrix} -e^t\\ 6e^{-t} \\ e^t \end{bmatrix}$ $=\begin{bmatrix} -te^t\\ -2te^t -27e^{-t}+2te^t+12e^{-t}\\ -te^t-18e^{-t}+2te^t +12e^{-t} \end{bmatrix}+\begin{bmatrix} -e^t\\ 6e^{-t} \\ e^t \end{bmatrix}$ $=\begin{bmatrix} -e^t -te^t\\ -9e^{-t} \\ e^t+te^t-6e^{-t} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.