Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.3 Terminology for Systems of Linear Equations - Problems - Page 145: 22

Answer

$=\begin{bmatrix} -8e^{-2t}+2\cos t\\ -6e^{-2t}+\sin t \end{bmatrix}$

Work Step by Step

$x'=\begin{bmatrix} -8e^{-2t}+2\cos t\\ -6e^{-2t} + \sin t \end{bmatrix}$ We have: $x'=Ax+b$ $\begin{bmatrix} 1 & -4\\ -3 & 2 \end{bmatrix}.\begin{bmatrix} 4e^{-2t}+2\sin t\\ 3e^{-2t} - \cos t \end{bmatrix}+\begin{bmatrix} -2(\cos t +\sin t)\\ 7 \sin t+2 \cos t \end{bmatrix}$ $=\begin{bmatrix} -8e^{-2t}+2\cos t\\ -6e^{-2t}+\sin t \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.