Answer
$30x-2x^{2}$
$x=15/2$
$112.5$ sq in
Work Step by Step
(a) Cross-sectional area = $(30-2x)\times x$
$(30-2x)\times x= 30x - 2x^{2}$
(b) Maximizing$=-b\div 2a$
$a=-2,b=30$
maximum $x$ value
$-30/2(-2)=15/2$
(c) maximum cross-sectional area
substitute $x=15/2$
$30x-2x^{2} = 30(15/2)-2(15/2)^{2}=112.5$ sq inch